En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
ألاسم
جِلَاتِين ; جِيلَاتِين
ألاسم
جِلَاتِين ; جِيلَاتِين
Starch gelatinization is a process of breaking down of intermolecular bonds of starch molecules in the presence of water and heat, allowing the hydrogen bonding sites (the hydroxyl hydrogen and oxygen) to engage more water. This irreversibly dissolves the starch granule in water. Water does act as a plasticizer.
Three main processes happen to the starch granule: granule swelling, crystallite or double helical melting, and amylose leaching.
The gelatinization temperature of starch depends upon plant type and the amount of water present, pH, types and concentration of salt, sugar, fat and protein in the recipe, as well as starch derivatisation technology are used. Some types of unmodified native starches start swelling at 55 °C, other types at 85 °C. The gelatinization temperature of modified starch depends on, for example, the degree of cross-linking, acid treatment, or acetylation.
Gel temperature can also be modified by genetic manipulation of starch synthase genes. Gelatinization temperature also depends on the amount of damaged starch granules; these will swell faster. Damaged starch can be produced, for example, during the wheat milling process, or when drying the starch cake in a starch plant. There is an inverse correlation between gelatinization temperature and glycemic index. High amylose starches require more energy to break up bonds to gelatinize into starch molecules.
Gelatinization improves the availability of starch for amylase hydrolysis. So gelatinization of starch is used constantly in cooking to make the starch digestible or to thicken/bind water in roux, sauce, or soup.